Network traffic prediction of the optimized BP neural network based on Glowworm Swarm Algorithm
نویسندگان
چکیده
منابع مشابه
Network Traffic Prediction based on Particle Swarm BP Neural Network
The traditional BP neural network algorithm has some bugs such that it is easy to fall into local minimum and the slow convergence speed. Particle swarm optimization is an evolutionary computation technology based on swarm intelligence which can not guarantee global convergence. Artificial Bee Colony algorithm is a global optimum algorithm with many advantages such as simple, convenient and str...
متن کاملAdaptive Network Traffic Prediction Algorithm based on BP Neural Network
With the rapid development of Internet technology, the network now has a large size and high complexity, and consequently the network management is becoming increasing difficult and complexity, so traffic forecast play a more and more role in network management. With a large amount of real traffic data collected from the actual network, an adaptive network traffic prediction algorithm based on ...
متن کاملTelephone Traffic Forecasting Based on Grey Neural Network Optimized by Improved Particle Swarm Optimization Algorithm
To solve the problem that the parameters in grey neural network (GNN) are difficult to determine, the improved Particle Swarm Optimization (IPSO) algorithm is employed to search the optimums by the introduction of a threshold of velocity. When the particle velocity is less than the threshold, an accelerated momentum is applied on the particle to reinitialize the particle velocity and position. ...
متن کاملThe Prediction of Granulating Effect Based on BP Neural Network
During the granulation process of Iron ore sinter mixture, there are many factors affect the granulating effect, such as chemical composition, size distribution, surface feature of particle, and so on. Some researchers use traditional fitting calculation methods like least square method and regression analysis method to predict granulation effects, which exists big error. In order to predict it...
متن کاملPrediction of Cardiovascular Diseases Using an Optimized Artificial Neural Network
Introduction: It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure. Materials & Methods: This study utilized a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Systems Science & Control Engineering
سال: 2019
ISSN: 2164-2583
DOI: 10.1080/21642583.2019.1626299